

Sekcja Metod Badań Materiałów Komitetu Nauki o Materiałach PAN oraz Instytut Metalurgii i Inżynierii Materiałowej PAN

Compacts of YTZP / TiC 1500°C / 10⁻⁴mbara / 2 hrs.

Ready

Compacts YTZP / TiC 1250°C / 7,7 GPa / 30 sek

Waldemar Pyda, AGH, Lucyna Jaworska, IOS

HP (7GPa)/LT sintering

200 nm

HP (7GPa)/LT sintered

STEM / HAADF

100 nm

Aldo Boccaccini

SiO₂ +CNT

HAADF

Cz. II. Nanocomposites: ceramic + CNT - summary

Problems solved:

- Microstructure of powders and compacts of ZrO₂ + CNT was described
- The amorphization tendency of CNT during sintering was proved.
- The possibility of formation of nan-TiC nanowires was showed.
- The possibility of retaining CNT through sintering of bioglas was confirmed.

Problems to be solved:

Mechanism of formation of nanowires of TiC

Projekty: iNTeg-Risk,

Functional coatings: (SHS high strength joining)

 AITi (20 nm) (Ana Sofia Ramos University of Coimbra)

("anti-wear")

 CuNi 5 / 5 nm (Paweł Wieczorek/ Uniwersity of Częstochowa)

Ana Sofia Ramos Mechanical Engineering Department Polo II, University of Coimbra

TiAl / 20 nm

Ready

Wielowarstwy Cu/Me

Deposition method

- single solution, potentiostatic electrodeposition
- Substrates:
- n-type Si (100) Sb 2×10¹⁸ 1/cm³, resistivity - 0.017 Ω·cm
- polycrystalline Cu (99,9 %)

Multilayer system		Bath compsition							
Cu/Ni		1.5 M Ni(SO ₃ NH ₂) ₂ + 0.01 M CuSO ₄ + 0.5 M H ₃ BO ₃							
Co/Cu		1,4 M CoSO ₄ + 0.008 M CuSO ₄ + 0,64 M H ₃ BO ₃							
NiFe/Cu		0.5 M Ni(SO ₃ NH ₂) ₂ + 0.01 M CuSO ₄ + 0.04 M FeSO ₄ + + 0.4 M H ₃ BO ₃							
Nr	Multilayer system		Subst.	t _{cu} [nm]	t _{Ni, Co,} _{NiFe} [nm]	Λ [nm]	n	E _{cu} [mV]	E _{ni} [mV]
T14	Cu/Ni		Cu	10	10	20	150	-500	-1300
T98	Cu/Ni		Si	5	5	10	20	-500	-1300
P37	Cu/Co		Si	5	5	10	20	-600	-1200
N11	Cu/NiFe		Si	4	4	8	20	-500	-1200

Paweł Wieczorek

Philips CM20

CuNi, 5/5nm (Λ=10nm)

Physics of X-ray Multilayer Structures Technical Digest, **7** (1992) 94-96. **Effects of Fresnel Fringes on TEM Images of Interfaces in X-Ray Multilayers** Tai D. Nguyen, Michael A. O'Keefe, Roar Kilaas, Ronald Gronsky, Jeffrey B. Kortright

- summary

Problems solved:

 The microstructure, phase and chemical content of n(Ti/AI) and n(Cu/Me) coatings was described

Problems to be solved:

- Analysis of defects in the multilayerd structure
- Quantitative measurements of layers chemical composition

Convergence Routes for Nanomaterials Characterization HArd NanoCOmposite Coatings

