

Charakterystyka napięciowo-prądowa wyładowania elektrycznego w gazie [41]

Struktura wyładowania jarzeniowego

KATODA (-) ciemnia Astona poświata katodowa ciemnia katodowa jarzenie ujemne (poświata ujemna) ciemnia Faradaya jarzenie dodatnie ciemnia anodowa jarzenie anodowe (poświata anodowa) ANODA (+)

Gaz	Świecenie katodowe	Jarzenie ujemne	Świecenie dodatnie
He	Czerwony	Różowy	Czerwonoróżowy
Ne	Żółty	Pomarańczowy	Czerwonobrązowy
Ar	Różowy	Ciemnoniebieski	Ciemnoczerwony
H ₂	Czerwonobrązowy	Jasnoniebieski	Różowy
N_2	Różowy	Niebieski	Różowy
O ₂	Czerwony	Jasnożółty	Czerwonożółty
Powietrze	Różowy	Niebieski	Czerwonożółty

Coating of Tubes

First steps of pretreatment and film deposition inside long tubes

Background - Motivation

- Problems in using traditional PVD/CVD coating techniques:
 - PVD: directed particle beam (plasma)
 - low deposition rate on surfaces parallel to directed beam
 - in holes: Depth/diameter ratio high => very low rate
 - CVD: deposition from gaseous precursor easier coating in holes

traditional precursors require high temperatures only carbon / metal-organic precursors allow coating on polymers

- Need for coating inside tube-shaped medical parts:
 - Direct contact to body fluids (blood, etc.)
 - Prevention of any harmful body reactions

System specification

Power supply: 25 kV, 20-550 Hz pulsing, 5-20 ms pulse width

Gas supply: 0-40 sccm gas flow (nearly all gases useable) dosing vapours by bubbler unit (e.g. HMDSO, metal-organics) and use of carrier gas

Vacuum conditions: working pressure: 0.2 - 1.4 mbar

Pulse shape:

Operation / plasma emission

Bright region

Background - Discharges

Background – discharge

Electrical conduction in gases - ionization and radiation phenomena

Background – Glow discharge

Wenige Elektronen, zu langsam zur Anregung Glimmhaut: Hohe Ionendichte, Elektronenenergie reicht zur Anregung (nicht ionisation)

Hittorf'scher (Crook'scher) Dunkelraum: Elektronen werden weiter beschleunigt bis zur Ionisationsenergie Negative Säule (Glimmlicht): Ionisationsfront, Licht durch Rekombinationsstrahlung

Faraday'scher Dunkelraum:

Geringe Elektronenenergie als Folge inelastischer Stöße an der Ionisationsfront, freie Weglänge kurz, Feld klein und nicht zur Anregung ausreichend

Positive Säule:

Quasineutrales Plasma ($Zn_i = n_e$), kleines elektrisches Feld, Spannungsabfall durch elektrischen Widerstand Anodenfall: Negative Raumladung

Background – Glow discharge

Kathode

Anode

Quelle: http://w5jgv.com/rife

Background – glow discharge

Energy conversation in positive column of glow discharge plasma

Background – glow discharge

21. Metody diagnostyki powierzchni

a. spektroskopowe metody analizy powierzchnib. diagnostyka strukturalna (AFM, SEM, TEM)c. naprężenia własne i metody ich pomiaru

a. spektroskopowe metody analizy powierzchni i cienkich warstw

Właściwości krytyczne podczas osadzania i modyfikacji powierzchni"

- Fizysorpca i chemisorpcja
- Napięcie powierzchniowe

Fizysorpcja \rightarrow siły van der Waalsa \rightarrow odwracalna

 $\begin{array}{l} \mbox{Chemisorpcja} \rightarrow \mbox{wiązania atomowe, spolaryzowane, jonowe} \rightarrow \mbox{reakcja chemiczna} \rightarrow \mbox{często nieodwracalna} \end{array}$

Właściwości zależne od zjawisk powierzchniowych

Właściwości elektryczne	Właściwości mechaniczne	Właściwości sterowane kinetycznie	Właściwości magnetyczne
Heterozłącza Procesy rekombinacji Dyfuzja i dotowanie Elektromigracja	Zmęczenie metali Adhezja -metal/ceramika -metal/polimer Warstwy twarde -azotki -węgliki	Adsorpcja Segregacja Kataliza -aktywacja -zatruwanie Korozja Osadzanie Wzrost	Magneto- oporność Anizotropia normalna

Badania powierzchni ciała stałego

-badania strukturalne

Mikroskopia optyczna LM (zdoln. rozdz. 250nm) Skaningowa mikroskopia elektronowa SEM (10nm) Transmisyjna mikroskopia elektronowa TEM (0.2nm) Mikroskopia sił atomowych AFM (0.2nm)

Spektroskopia bada i wyjaśnia teoretycznie oddziaływania pomiędzy materią będącą zbiorowiskiem atomów i cząsteczek a promieniowaniem elektromagnetycznym. Oddziaływania te powodują zmianę energii wewnętrznej zgodnie z zasadą zachowania energii wyrażającą się wzorem:

 $E = h \cdot v = h \cdot \frac{c}{2}$ gdzie: E - zmiana energii h - stała Plancka

- v -częstotliwość
- c prędkość światła
- λ -długość fali promieniowania

• metody badania struktury elektronowej Spektometria fotoelektronów: PES,

Odwrotna fotoemisja:IPES Spektrometria strat energii:EELS, Stany ściśle powierzchniowe:FES, INS, FIS

•badanie dynamiki ciała stałego

Spektometria w podczewieni:IRS, DS, FTS,

Rozpraszanie światła:BS, RS,

Nieelastyczne rozpraszanie neutronów:INS, ICNS, TF, NSE, IINS, QNS, CN, VNS,

Spektroskopia kontaktu punktowego:PSC, TEF,

Spektroskopia strat energii elektronów: EELS

Rozpraczanie atomów He: HAS

Nieelastyczne rozpraszanie promieni X: IXS

Diagnostyka powłok oparta o spektroskopię elektronową i fotospektroskopię Poszukiwane informacje:

Skład chemiczny

Identyfikacja faz i ich rozmieszczenie w próbce

Charakterystyka granic międzyfazowych

Źródła wzbu	dzenia 🕂 🔒				
∣ Sygnał ↓ analizowany	optyczne	prom	. X	elektrony	jony
Optyczne	IR, VIS, UV, PL, EL			UPS	
Prom. X		XRF, X	(RD	XPS, XAES, SEM	
				TEM, AES	
Elektrony		EMPA	A	LEED, EELS	
Jony		PIXE		IAES	SIMS,RBS,
AES-Auger Ele	AES-Auger Electron Spectroscopy		NRA-nuc	lear radiation analysis	NRA,ERDA
EELS-electron energy loss spectroscopy			PIXE-pa	rticle-induced X-ray emiss	ion
EL-ellipsometry PL-photoluminescence			oluminescence		
EMPA-electron microprobe analysis			PSD-photon stimulated desorption		
ERDA-elastic recoildetection analysis			RBS-Rutheford backscattering		
ESD-electron simulated desorption			SEM-scanning electron microscopy		
LEED-low energy electron diffraction			SIMS-secondary ion mass spectrometry		
IAES-ION-INDUCED AUGER Electron spectroscopy			UPS-ultrafiolet photoelectron spectroscopy		
XBD-X-ray diffraction analysis			UV-ultrafiolet absorption		
VIS-visible absorption			XRF-X-ray fluorescence		
XPS-X-ray photoelectron spectroscopy			XAES-X-ray induced AES		

Głębokość pomiaru i czułość poszczególnych metod

Metody analizy powierzchni w funkcji: mierzonej wielkości i jej detekcji

Mierzona wielkość →	Fotony	Elektrony	Cząstki	Pola
Detekcja ↓	IR-FTIR	EMPA		
Foton	SERS,XRD XRF	BIS		
Elektron	XPS-ESCA SEXAFS UPS, XANES	AES EELS LEED SEM		
Cząstki -Jony -Neutrony -Atomy		RHEED	ISS(jony) NAA(neutrony RBS(jony) SIMS(jony) Helium scat.	AP
Pola -Siły -Elektyczne -Magnetyczne				AFM STM MFM

Metody analizy powierzchni w funkcji: zbieranej informacji

Informacja	Metoda	Próżnia
Analityczna	AES	UHV
-	XRF	Normal vacuum up to atmosphere
	NAA	None
	RBS	Normal vacuum
	SERS	Atmospher + liquid
	LAMMA	Normal vacuum
	GDS	None
	SIMS	UHV + gas
	XPS-ESCA	UHV

Informacja	Metoda	Próżnia
Morfologia	SEM AFM STM	Normal vacuum None Normal vacuum up to atmosphere
Struktura kryształu -daleki zasięg -bliski zasięg	XRD LEED RHEED STM EXAFS	None UHV UHV UHV UHV
Struktura elektronowa	UPS EELS	UHV UHV

Metody analityczne:

An elementar surface analysis	AES	
With knowing of the elementar bounds	ESCA	
Quantitative analysis	NAA, XRI	
Very small concentrations	SIMS, AP	
• Fast in-depth analysis (destructive)	SIMS	
With many elemnts in the sample	GDS	
Non-destructive in-depth analysis	RBS	
Knowledge of the surface morphology	SEM	
Atomically resolved	STM	
At molecular scale	AFM	

• Knowledge of the crystal structure;

ISS, LEED, RHEED, STM, GIXS

Metody analityczne (cd):

Short-distance order

EXAFS, SEXAFS

- Cartography of elements
 SAM
 Spatially resolved
 XRF, SIMS
- Knowledge of the electronic structure ARUPS, EELS
- Work without UHV contraints GDL, XRD, AFM
- ..and even with liquidus! STM, AFM
- Investigating organic materials FTIR, XPS

ARUPS: Angle resolved ultra violet photo electron spectroscopy SAM: Scanning Auger microscopy <u>Analiza chemiczna</u> (pierwiastki i wiązania) XRF lub EMPA; EXAFS lub SEXAFS(powierzchnia) <u>Analiza właściwości powierzchni</u>

elipsometria, megneto-optyczny efekt Kerra (MOKE)

Najefektywniejsze metody analizy powierzchni:

- na bazie emisji prom. rtg : XPS lub ESCA (electron spectroscopy for chemical analysis); AES; XRF
- na bazie absorpcji prom. rtg : SEXAFS
- na bazie elektronów: AES (zakres 1 do 2.5nm)
- na bazie jonów: SIMS
- elipsometria i optyczny efekt Kerra
- pomiary kąta zwilżania
- spektroskopia Ramana

Słownik akronimów stosowanych w analizie powierzchni

AAS:	Atomic absorption spectroscopy
AES:	Auger electron spectroscopy
	(lub: Atomic emission spectroscopy)
AFM:	Atomic force microscopy
AFS:	Atomic fluorescence spectroscopy
AP:	Atomic probe
ATR:	Attenuated total reflexion (osłabione odbicie całkowite
BET:	Bruauer, Emmet, Teller
BIS:	Bremsstrahlung Isochronal Spectroscopy
	(lub: bioelectrical impedance spectroscopy)
CP/MAR/NMR	Cross polarization magic angle rotation
	NMR (nuclear magnetic resonanse)

EBIC:	Electron beam-induced current
EDS:	Energy-dispersive spectrometer
EDX:	Electron dispersion X-ray (spectroscopy)
EELS:	Electron energy loss spectroscopy
EPMA:	Electron probe microanalysis
ESCA:	Electron spectroscopy for chemical analysis
(S)EXAFS:	(Surface) Extended X-ray absorption fine structure
FTIR:	Frustrated total internal reflexion and Fourier transform infrared
GDL:	Glow discharge lamp
GISAXS:	Grazing incidence small angle X-ray scattering
GIXS:	Grazing incidence X-ray scattering
IBAD:	Ion-beam-assisted deposition
IBS:	Ion-beam sputtering
ISS:	Ion scattering spectroscopy

LAMMA:	Laser assisted microprobe analysis
LEED:	Low-energy electron diffraction
MBE:	Molecular beam epitaxy
MFM:	Magnetic force microscopy
MOKE:	Magneto-optical Kerr effect
NAA:	Neutron activation analysis
NMR:	Nuclear magnetic resonanse
PIXE:	Proton-induced X-ray emission
RBS:	Rutheford backscattering
SEM:	Scanning electron microscope
SERS:	Surface-enhanced Raman spectroscopy
SIMS:	Secondary ion mass spectroscopy
(ToF)-SIMS:	Time-of-flight SIMS

Secondary neutral ion mass spectroscopy
Scanning near field optical microscopy
Scanning transmission electron microscopy
Scanning tunneling microscopy
Transmission electron microscopy
High-resolution TEM
Ultraviolet photoelectron spectroscopy
Wavelenght-dispersive spectrometer
X-ray absorption near edge structure
X-ray absorption spectroscopy
X-ray photoelectron spectroscopy
X-ray diffraction
X-ray fluorescence

b. diagnostyka strukturalna (AFM, SEM, TEM) Mikroskopia elektronowa

STEM - skaningowy, transmisyjny mikroskop elektronowy

SEM - skaningowy mikroskop elektronowy

FIM - polowy mikroskop jonowy

REM - refleksyjny mikroskop elektronowy

PCM - mikroskop z kontrastem fazowym

10² 10⁴ 10⁶ [Å]STM - skaningowy mikroskop Pozioma skala tunelowy

This is the type of electron gun used in most electron microscopes. It is robust, relatively cheap and does not require an ultra high vacuum.

In the thermionic electron gun, electrons are emitted from a heated filament and then accelerated towards an anode

A divergent beam of electrons emerges from the anode hole.

In the field emission gun, a very strong electric field (109 Vm-1) is used to extract electrons from a metal filament. Temperatures are lower than that needed for thermionic emission.

This gives a much higher source brightness than in thermionic guns, but requires a very good vacuum.

Field emission electron gun

Soczewki kondensorowe

Soczewka obiektywowa

TEM LAB

Cr/CrN/Cr/Cr(N,C) – FIB cut samples / "super thin" analitycal transmission electron microscopy (AEM) using enegy dispersive spectroscopy (EDS) attachment

c. naprężenia własne i metody ich pomiaru

- Istota naprężeń własnych
- Klasyfikacja naprężeń własnych
- Wpływ naprężeń własnych na właściwości fizyczne materiału
- Metody pomiarowe
 - Optyczne
 - Promieniowanie X
 - Neutronowe
 - Usuwanie warst
 - Spektroskopia ramanowska
 - Ultradźwiękowa
 - Magnetyczna

Istota naprężeń własnych

- Naprężenia własne to naprężenia pozostające w materiale przy braku zewnętrznego obciążenia (sił przyłożonych, gradientu temperatur itp).
- Są naturalnym wynikiem procesów technologicznych.

Klasyfikacja naprężeń własnych

Wpływ naprężeń własnych na właściwości fizyczne materiału

- Właściwości wytrzymałościowe
- Właściwości korozyjne
- Właściwości magnetyczne

Pomiary optyczne

- Holografia
- Światło spolaryzowane

Closeup of the PRISM Residual Stress Measurement drill setup

Hologram Obtained from Residual Stress Measurement on a component

Pomiary rentgenowskie

Promieniowanie synchrotronowe

Neutrony

Usuwanie warstw

Spektroskopia ramanowska

- Analiza spektrum rozproszonego promieniowania laserowego
- Przesunięcie linii ramanowskich jest wprost proporcjonalne do wariacji naprężeń hydrostatycznych
- Analiza powierzchni
- Analiza objętościowa tylko dla materiałów przezroczystych

Ultradźwięki

- Pomiar szybkości rozchodzenia się fal ultradzwiękowych w materiale
- Słaba rozdzielczość metody

Magnetyzm

- Wpływ naprężeń własnych na grupowanie się domen magnetycznych
- Badanie odpowiedzi magnetycznej materiału (tylko w ferromagnetykach)

d. diagnostyka właściwości mikro-mechanicznych

Micro-Combi-Tester

Pomiar twardości i modułu sprężystości Dynamiczne wgłębnikowanie

> Parametry urządzenia:
> Rodzaje wgłębników: Vickers- kąt piramidy 136⁰ Berkovich- kąt piramidy 65⁰
> Zakres nastawy siły obciążającej wgłębnik: 0.02- 30[N]
> Dokładność pomiaru głębokości penetracji: 0.3nm

Twardość

- Brinella kulka 10; 5; 2,5 mm HB obc.F
- Rockwella A stożek 120⁰ HRA obc.60kG
- Rockwella C stożek 120° HRC obc.150kG
- Rockwella B kulka 1/16 cala HRB obc.100kG
- Vickersa piramida 136⁰ HV obc.F
 (Knoopa piramida 120⁰ odcisk romb)

Metody wyznaczania mikromechanicznych właściwości materiałów oraz cienkich warstw

Micro-Combi-Tester

Możliwości: •Wyznaczenie twardości i modułu Younga miękkich, twardych, kruchych oraz ciągliwych materiałów •Wykonanie scratch-testu- testu zarysowania •Wykonanie testu "ball on disk"- testu zużycia

Micro-Combi-Tester

Scratch test

Adhezja cienkich warstw metoda rysy (micro-scratch test)

Zaokrąglona końcówka diamentowa lub metalowe ostrze przeciągane jest ze wzrastającym obciążeniem po powłoce. Po przekroczeniu pewnego obciążenia krytycznego warstwa zostaje przebita i oddziela się od podłoża.

Obciążenie krytyczne określane jest z dużą dokładnością przy użyciu czujnika akustycznego zamocowanego do uchwytu końcówki, siły tarcia, głębokości penetracji i mikroskopii optycznej. Wartości obciążeń krytycznych można używać to oszacowania właściwości adhezyjnych różnych kombinacji powłoka-podłoże.

Lc (6.3 N)

10

Adhezja cienkich warstw-metoda rysy (nano-scratch test) połączona z obserwacją w mikroskopie sił atomowych

AFM

Obiektyw AFM umieszczony jest w mikroskopie w miejsce standardowego obiektywu optycznego.

To połączenie sprawia, że otwiera się cała gama możliwości wykorzystania metody rysy:

 Możliwość obserwacji dużych powierzchni próbki połączona ze zdolnością rozdzielczą rzędu nanometrów.

- Badanie ułożenia materiału wokół rysy.
- Pomiary wymiaru krytycznego.

- Badania trawionych struktur i chropowatości powierzchni półprzewodników.

- Profilometria powłok i cienkich warstw

Diamentowa końcówka rysuje powierzchnię ceramiczną (SEM)

The cross-cut test is a simple and easily practicable method for evaluating the adhesion of single- or multi-coat systems. Procedure

Make a lattice pattern in the film with the appropriate tool, cutting to the substrate

Brush in diagonal direction 5 times each, using a brush pen or tape over the cut and remove with Permacel tape

Examine the grid area using an illuminated magnifier

Cross-Cut Results

Adhesion is rated in accordance with the scale below.

Detachment of small flakes of the coating at the intersections of the cuts. A cross-cut

The edges of the cuts are completely smooth; none of the squares of the lattice is detagod Class .: 1 / ASTM Class .: 4 B

ISO Class.: 2 / ASTM Class.: 3 B

The coating has flaked along the edges and/or at the intersections of the cuts. A crosscut area significantly greater than 5 %, but not significantly greater than 15 %, is ISO Class.: 3 / ASTM Class.: 2 B affected.

area not significantly greater than 5 % is affected.

The coating has flaked along the edges of the cuts partly or wholly in large ribbons, and/or it has flaked partly or wholly on different parts of the squares. A cross-cut area significantly greater than 15 %, but not significantly greater than 35 %, is affected.

ISO Class.: 5 / ASTM Class.: 0 B Any degree of flaking that cannot even be classified by classification 4.

ISO Class.: 4 / ASTM Class.: 1 B

The coating has flaked along the edges of the cuts in large ribbons and/or some squares have detached partly or wholly. A cross-cut area significantly greater than 35 %, but not significantly greater than 65 %, is affected.

In practice, three different empirical test procedures are used to assess the resistance of coatings and allied products to cracking and/or detachment from the substrate under different conditions of deformation.

Bend Test

Bending lacquered sheet metal over a defined radius allows an indication of the elongation and adhesion of a paint film due to bending stress. The DIN EN ISO 1519 standard only permits the use of cylindrical mandrels.

The ASTM D 522 and the DIN EN ISO 6860 standards describe the test method by means of a conical or cylindrical mandrel. The use of a conical mandrel bending tester enables testing of a large variety of bending radii at the same time.

Impact Test - "Falling-weight Test"

The impact tester has gained wide acceptance in testing the impact resistance of many types of coatings and substrates. International standards describe a method for evaluating impact resistance of a coating to cracking and peeling from a substrate when it is subjected to a deformation caused by a falling weight, dropped under standard conditions yielding rapid deformation.

Impact Tester

Consists of a solid base with a guide tube support

The guide tube has a slot to direct a weight that slides inside the guide tube

A collar fits on the tube that helps the user slide the weight up to the accurate height

Graduations are marked along the slot to facilitate readings Procedure

Place sample under the punch

Lift the weight to desired height on guide tube and let it drop View the damage of the sample visually or with low powered magnification

Adjust the height and weight of the impacter to determine exact point of failure or establish pass/fail specifications

Cupping Test

Note: The coated or uncoated side of the panel can tested to simulate either indentation or bulging.

A die having a hardened and polished surface and a sample holder with a retaining ring are the heart of a cupping tester. The indenter that contracts the test panel is of hardened polished steel and forms a hemisphere of 8 in (20 mm) diameter. The maximum cupping depth is approx. 14 mm. The test process is observed through a microscope or magnifying glass. When evaluating the test results, it must be carefully assessed when the coating system starts cracking.

Twardość powłok - nano-wgłębniki Vickersa, Berkovitcha

Końcówka wgłębnika, normalna do powierzchni próbki, o znanej geometrii, wprowadzana jest w materiał ze wzrastającym do ustalonej wartości obciążeniem. Następnie obciążenie jest stopniowo zmniejszane do momentu wystąpienia częściowej bądź całkowitej relaksacji próbki. Obciążenie i przemieszczenie są zapisywane przez cały czas trwania procesu, a **z powstałej krzywej** można obliczać właściwości mechaniczne jak **twardość, moduł Younga**, a także użyć wyników do rozważań nad **naprężeniami własnymi, pełzaniem, odpornością na pękanie** czy **energią plastyczną i sprężystą próbki**.

Mapy twardości pokryć tribologicznych

5.2 micron Ion-beam Assisted Deposition (IBAD) Alumina; Stephen Abela, University of Malta

Tester ze skojarzeniem trzpień-tarcza // kula-

tarcza

- <u>odporność na zużycie i współczynnik</u> <u>tarcia</u> materiału przy ślizganiu po innym materiale, w zależności od prędkości poślizgu, nacisków powierzchniowych, obecności i rodzaju środka smarowego, zanieczyszczeń i innych czynników
- Nieruchoma próbka w postaci trzpienia lub kulki dociskana jest siłą P do obracającej

P

R
Badania odporności na zużycie oraz odporności na zatarcie materiałów przy tarciu ślizgowym w układzie <u>trzy próbki</u> <u>wałeczkowe - przeciwpróbka stożkowa</u>, wg PN-83/H-04302

• Badanie na testerze polega na tarciu w określonych warunkach trzech nieruchomych wałeczkowych próbek (2) o obracającą się stożkową przeciwpróbkę (1). Węzeł tarcia może pracować w warunkach tarcia technicznie suchego, może być smarowany jednorazowo nałożoną porcją

Badania dynamiczne (wytrzymałość na zmęczenie - nano-impact and contact fatigue)

Analiza własności odkształceniowych

Moduł sprężystości

$$E_r = \frac{\sqrt{\pi} \cdot S}{2 \cdot \sqrt{A}}$$

Mikrotwardość

$$\mu HV = \frac{P_{\text{max}}}{A}$$

 $A = h_{\max} - h_f$

$$E_r$$
 - Zredukowany moduł sprężystości
 $\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_i^2}{E_i}$

Różnica pomiędzy standardowym pomiarem twardości a pomiarem przy użyciu MCT

Badania tarciowo- zużyciowe w styku kula- płaszczyzna

Skojarzenie testowe w ruchu a)obrotowym próbki, b)postępowo-zwrotnym próbki. 1- przeciwpróbka; 2- próbka

Parametry badań (ruch postępowo- zwrotny):•Obciążenie, Fn1N•Prędkość przesuwu stolika, v4mm/min•Długość drogi tarcia, s2mm•Liczba cykli, N100

Parametry badań (obrotowy):

Obciążenie Fn[N]	Prędkość liniowa, v[m/s]	Prędkość obrotowa, n[obr/min]	Liczba cykli, N	Promień umieszczen ia kuli, R _T [mm]
0.5*	0.03	60	2000	5
1**				4.5

Twardość metodą Leeba

22. Twarde i supertwarde powłoki na bazie azotków, weglików, borków i nanokompozytów

Właściwości cienkich filmów takie jak:

twardość powłok, wytrzymałość, odporność korozyjna, odporność termiczna (żarowytrzymałość, żaroodporność) zależy od:

- wielkości ziarna
- morfologii
- porowatości (upakowania)
- naprężeń własnych

Wymagania dla powłok twardych:

- Optymalna jakość powierzchni; właściwości tribologiczne, zużycie chłodziwa i czynnika smarującego
- Wysoka twardość powierzchni; dobra odporność na zużycie
- Maksymalna wytrzymałość na obciążenia szokowe; połączenie twardości z wytrzymałością zmęczeniową
- Doskonała odporność na utlenianie/korozję w warunkach suchego/wilgotnego otoczenia

Wymagania skład-struktura-właściwości spełniają najlepiej:

węgliki/azotki na bazie tytanu i wolframu

Charakterystyka i właściwości powłok twardych:

Def. Powłoka twarda to obszar o małym wymiarze ograniczony otaczającą atmosferą z góry i podłożem od dołu

Grubość

optymalna $t=R \times H/E^{-1}$

gdzie: $1/E_{2} = 1/E_{1} + 1/E_{2}$; H – twardość powłoki;

E₁ i E₂ – moduł Younga powłoki i podłoża

Dla narzędzi skrawających na podłożu metalicznym t = około 5 µm

Dla powłok tribologicznych t = około 1-3 μ m

Skład chemiczny

Materiały z dużym modułem Younga ; wysoka energia wiązań ; azotki i węgliki metali przejściowych /hybrydyzacja orbitali sp i p/ Odporność na utlenianie i korozję; stabilność warstw tlenkowych

<u>Struktura</u>

Struktury regularne są bardziej twarde niż materiały amorficzne; tendencja do tworzenia struktury regularnej (kubicznej) maleje wraz ze wzrostem liczby porządkowej grupy metalu w układzie okresowym. Struktury metastabilne posiadają wysoka gęstość defektów co prowadzi do występowania dużych naprężeń własnych w powłokach.

Morfologia i wielkość ziarna

- Ruchliwość adatomów wpływa na morfologię; mała ruchliwość sprzyja tworzeniu struktury kolumnowej; morfologia kontrolowana jest przez: szybkość osadzania, temperaturę, ciśnienie i napięcie podłoża (model Thorntona)
- Właściwości mechaniczne w funkcji wielkości ziarna opisuje zależność Halla-Petcha
- Twardość powłoki $H = H_0 + k/d^{1/2}$
- gdzie: H₀ -samoistna twardość materiału /o dużym ziarnie/; k –stała materiałowa; d –wielkość ziarna
- Stosowalność prawa Hall-Petcha ogranicza się do powłok jednowarstwowych lub wielowarstwowych z modulacją dwuwarstwy powyżej 10 nm

Szorstkość i morfologia powierzchni

Szorstkość wpływa na właściwości tribologiczne; duża szorstkość lub znaczne wypolerowanie może obniżać adhezję pomiędzy powłoką a podłożem

Naprężenia własne

Powłoki twarde nałożone na miękkie podłoża mogą posiadać wysoki poziom naprężeń ściskających /nawet do 10 GPa/.
Naprężenia własne na poziomie 3 GPa w pewnych zastosowaniach są pożądane

Adhezja

- Def. ASTM Adhezja to warunek przy którym powierzchnie są złączone siłami międzyfazowymi
- Adhezje można mierzyć siłą lub energią

<u>Twardość</u>

Twardość to odporność materiału na plastyczną deformację wywołaną penetratorem

- Twardość można zwiększyć poprzez: tworzenie rozworów stałych, wydzielenia drugiej fazy, nono-krystalizację lub osadzanie wielowarstw o wymiarach nanometrycznych
- Zależy od morfologii; struktura kolumnowa generalnie obniża twardość w stosunku do zwartej wywołując anizotropię
- Moduł Younga

Mniej zależy od charakterystyki powłoki, a silnie od składu chemicznego; dlatego azotki i węgliki z silnymi wiązaniami, krótkimi wiązaniami i wysokim stopniem kowalencji mają duże moduły

Wsp.plastyczności $\delta_{\rm H} = 1-14,3(1-\dot{\upsilon}-\dot{\upsilon}^2){\rm H/E}$

Podwójne azotki i węgliki metali

- Azotek i węglik tytanu
- Azotek i weglik wolframu

Potrójne azotki

- Azotek tytanowo-aluminiowy
- Azotek tytanowo-wolframowy

Nano-kompozyty wielowarstwowe na bazie azotków

Nowe tworzywa o dużej twardości/ciągliwości oraz korzystnych naprężeniach własnych i dobrej adhezji;

twardość i/lub ciągliwość ulega poprawie przez zmniejszenie modulacji dwuwarstwy, zaś adhezja przez jej zwiększenie

Twardość w systemie o niskim periodzie (niskiej modulacji) Λ ujmuje zależność Halla-Petcha

$\mathbf{H} = \mathbf{H}_0 + \mathbf{k} \; \Lambda^{\textbf{-}\beta}$

B-stała o wartości 0,5-1

Wzrost twardości przypisywany jest tworzeniu super-sieci

23. Powłoki na bariery termiczne

Powłoki jako bariery termiczne stosowane są w turbinach gazowych lub silnikach wysokoprężnych
Składają się zazwyczaj z dwóch warstw; wiążącej (metalowej) i izolacyjnej (ceramicznej – zewnętrznej)
Wiążąca: a) (platyna-) aluminidki

b) MCrAIY M=Ni lub Co

Wybór warstwy wiążącej zależy od zastosowanej metody wytwarzania warstwy zewnętrznej.
Najczęściej do nakładania warstwy zewnętrznej stosuje się electron beam PVD (EB PVD) i atmospheric plasma sprying (ASP)
Najnowsze powłoki zewnętrzne bazują na tlenku cyrkonu ZrO₂
/stabilizowanym MgO,CaO lub Y₂O₃; struktura tetragonalna lub regularna YSZ/

24. Powłoki polimerowe uzyskiwane poprzez polimeryzację plazmową

Reakcje chemiczne wywoływane plazmą:

- Polimeryzacja plazmowa
- Oddziaływanie plazmy; modyfikacja powierzchni (wprowadzanie grup funkcjonalnych zawierających tlen- azot- fluor do łańcuchów polimerowych)
- Ko-polimeryzacja plazmowa
- Polimeryzacja plazmowa polega na oddziaływaniu plazmy z molekułami monomerów, które są aktywowane do zainicjowania reakcji polimeryzacji; powierzchnia podłoża pokrywa się cienkim filmem polimerowym

Polimeryzacja plazmowa różni się od konwencjonalnej

Zawiera dwa procesy:

- wzrost molekuł
- wytwarzanie polimeru

W znaczeniu chemicznym

- Polimeryzacja rodnikowa /propagacja reakcji monomerów na etap polimeryzacji inicjowana jest przez cząstki rodnikowe w łańcuchach polimerowych/
- Polimeryzacja jonowa /reakcje chemiczne propagują się przez cząstki jonowe/

Propagujące się cząstki w polimeryzacji plazmowej nie są plazmą, plazma jest źródłem energii do zainicjowania polimeryzacji

Skład atomowy polimerów po polimeryzacji plazmowej przedstawia Tablica

Monomer zastosowany	Skład atomowy	Skład atomowy
do polimeryzacji plazmowej	monomeru	polimeru plazmowego
Etylen	C_2H_2	$C_{2}H_{2.6}O_{0.4}$
Etylen/N ₂	C_2H_2/N_2	$C_{2}H_{2.6}O_{0.4}$
Acetylen	C_2H_2	$C_2 H_{1.6} O_{0.3}$
Acetylen/N ₂	C_2H_2/N_2	$C_2 H_{2.2} N_{o.5} O_{o.3}$
Acetylen/H ₂ O	C_2H_2/H_2O	C ₂ H _{2.7} O _{0.6}
Acetylen/N ₂ /H ₂ O	$C_2H_2/N_2/H_2O$	$C_2 H_{2.9} N_{0.5} O_{0.7}$
Allen (propadien)	C ₃ H ₄	C ₃ H _{3.7} O _{0.4}
Allen/N ₂	C_3H_4/N_2	$C_{3}H_{3.8}N_{0.7}O_{05}$
Allen/H ₂ O	C_3H_4/H_2O	$C_{3}H_{4.2}O_{0.6}$
Allen/N ₂ /H ₂ O	$C_3H_4/N_2/H_2O$	$C_{3}H_{24.4}N_{0.45}O_{0.6}$
Akrylonitryl	C ₃ H ₃ N	$C_3H_3NO_{o.4}$
Propionitryl	C ₃ H ₅ N	$\mathrm{C_2H_{4.7}NO_{o.8}}$
Propylamin	C ₃ H ₉ N	C ₃ H ₅ NO _{0.4}
Allylamin	C ₃ H ₆ N	$C_3H_{4.7}NO_{o.4}$
Tlenek etylenu	C ₂ H ₄ O	$C_{2}H_{2.9}O_{o.4}$

- Polimery plazmowe nie mogą być interpretowane w oparciu o koncepcję powtarzania jednostki monomeru zastosowanego do polimeryzacji plazmowej
- /znaczna różnica w składzie atomowym pomiędzy polimerem plazmowym i zastosowanym monomerem;
- molekuły występujące w strefie plazmy zastosowanej do polimeryzacji plazmowej, nawet azot i para wodna, stają się składnikami polimeru plazmowego/
- Reakcja polimeryzacji plazmowej nie jest reakcją łańcuchową molekuł monomeru

"polimeryzacja atomowa" jest koncepcją reakcji polimeryzacji plazmowej wg. Yasuda

Gdy molekuły monomeru zostaną wstrzyknięte do plazmy, zostaną bombardowane przez aktywne cząstki takie jak: elektrony i jony pozostające w plaźmie, zostają rozdrobnione w małe fragmenty, które stopniowo ulegną rekombinacji budują większe molekuły. Tworzenie rodników i rekombinacja jest powtarzana w plaźmie prowadząc do osadzenia polimeru plazmowego na powierzchni podłoża

Mechanizm polimeryzacji plazmowej (Pau. 20.1)

Figure 20.1: Overall plasma polymerization mechanism.

25. Kierunki rozwoju inżynierii powierzchni Foresight 2020

- Nowoczesne technologie syntezy warstw ceramicznych, metaloceramicznych, polimerowych
- Nanomateriały dla bio-inżynierii; Biomateriały dla potrzeb implantacji i medycyny regeneracyjnej
- Biodegradowalne oraz podatne do recyklingu materiały
- Materiały i procesy inżynierii powierzchniowej dla przemysłu motoryzacyjnego i lotniczego

- Materiały w odnawialnych źródłach energii oraz nanowymienniki
- Technologie i materiały dla ogniw paliwowych
- Materiały i technologie dla narzędzi medycznych
- Poprawa cyklu życia materiałów inżynierskich; techniki regeneracji elementów pojazdów i wyrobów funkcjonalnych
- Materiały organiczne i ceramiczne dla elektroniki, optoelektroniki i fotoniki
- Materiały krystaliczne o strukturze zorientowanej oraz monokryształy

- Materiały porowate
- Materiały i warstwy niskotarciowe
- Kompozytowe warstwy funkcjonalne oraz warstwy gradientowe
- Materiały i technologie dla potrzeb mikro- i nano- biorobotów inteligentnych
- Materiały stykowe nowej generacji, podłoża odprowadzające i rozpraszające strumień ciepła
- Implanty adresowane (osobiste)
- Materiały o wysokim stosunku wytrzymałości do gęstości oraz nanodomieszkowane polimery
- Światłowody nowej generacji oraz nanomateriały multiferroiczne

- Materiały dla elektroniki cyfrowej i transmisji danych
- Materiały o odporności balistycznej
- Zaawansowane i inteligentne materiały tekstylne (geowłókniny, geotekstylia) oraz systemy tekstroniczne i urządzenia do ich integracji z tekstyliami i odzieżą
- Materiały konstrukcyjne ze zmodyfikowaną warstwą wierzchnią oraz materiały warstwowe z udziałem polimerów
- Materiały i technologie dla wytwarzania i magazynowania wodoru

Wear mechanism during ball-on-disc test of Ti/TiN composite multilayer system produced by hybrid PLD

L.Major¹, J.Morgiel¹, J.M.Lackner², W.Waldhauser², M.Kot³, B.Major¹

¹ Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland

² Joanneum Research Forschungsgesellschaft mbH, Laser Center Leoben, Leoben, Austria

³ AGH University of Science and Technology, Krakow, Poland

nstitute of Metallurgy and Materials Science PAS in Krakow

Deposition technique

Hybrid PLD coating system

I. as-deposited mono-layer coating

Coating surface

residual-stress caused micro-cracks Austenite steel substrate 100 nm TEM image of the cross-section

Single layered coating- low loading (0.25N)

HREM image of the crack at the cross-section

Single layered coating- high loading (1N)

Area endangered by corrosion Substrate has a contact with outside environment

TEM image of the cross-section

II. Multilayer coating
32 layered Ti/TiN coating

Cross- section of the place where penetrator was pushed into the coating

32 layered Ti/TiN coating ratio 1:1

STEM images of cracks propagating across the coating under applied load

Zone [001] Local plastic deformation (slip systems) /cracking

TEM image of the cross-section

Si) lino

Applie

Dislocations are moved in slip planes and in slip directions <uvw>{hkl}. These are the most packed planes and directions by atoms

For crystals which are characterized by hexagonal structure, slip can be realized by the following systems:

-<1120>{0001} -<1120>{1100}

Which out of possible systems are responsible for the -<1120>{1101} presented deformation??

Softer, <u>metallic layers</u> can <u>stop vertical cracking</u> which were propagating across ceramic layer.

The <u>decrease of their thickness</u> (the different ratio in between soft and hard layers) can have an <u>influence on hardness</u> (the increase).

Is it possible to reduce the amount of soft metalic phase not loosing the control on wear??

Two different ratio Ti to TiN were suggested:

1:2 1:4

Analysis of mechanical properties

(Lo Surface of	Penetrator the coating	hardne Type of pene load	ƏSS trator: Vickers 136º : 0.02- 30N
H [GPa]	Number	of layers	Hardness	
8x(Ti+TiN)		E	10mN	deviation
TiN- mono			26	1.40
ratio 1-1	16	247	21.74	1.40
ratio 1-2	16	255	24.14	1.90
ratio 1-4	16	263	27.12	2.10

COO

scratch

Type of penetrator:Rockwell 120°load: 0.05- 30Nspeed: 0.4- 20mm/minlength of scratch: up to 20 mm

	Lc1 [N]	Lc2 [N]
TiN- mono	5,1	12,8
8x ratio 1-1	7,2	16,1
8x ratio 1-2	7	19,5
8x ratio 1-4	7	28

Wear - $V_w = K(S*N/H)$

*J.F.Archard, J. Appl. Phys.*24(1953)981

 V_w - amount of the removed material, S- distance, N- load, H- hardness, K- wear coefficient

	Wv*10^- 6[µm^3/(N*m)]	Deviation.
TiN- mono Ti/TiN-1:1	2,17 11,9	0,6 2,5
Ti/TiN-1:2	2,115	0,4
Ti/TiN-1:4	2,55	1,02

<u>Coclusions</u>

-As deposited single layered (TiN) coatings were characterised by vertical cracking caused by residual stress. Under the applied load, cracks at grain boundaries open fast leading to coating fragmentation exposing substrate.

- The multilayer TiN/Ti coatings deform both by brittle cracking of ceramic and plastic deformation of metalic layers. The TiN/Ti multilayer hardness and wear was at the level of TiN till the ceramic phase dominated.

- The deformation and wear of multilayer TiN/Ti multilayer coatings proceeds keeping contnuity of metalic layers and therefore protecting substrate (keeping corrosion at bay).

Thank you for attention

www.imim.pl

Institute of Metallurgy and Materials Science PAS in Krakow; Poland